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1. Introduction 

Predicting chemical reaction properties has a wide range of applications, including the design of 

new materials, the discovery of novel drugs, and the optimization of industrial processes. 

(REFERENCE) Automating predictions can save costs, drastically reduce the time required in the 

drug development cycle, and reduce use of solvents and chemicals to carry out experiments 

(REFERENCE). Traditionally, this has been accomplished with rule-based expert systems that 

manually or algorithmically encode reaction heuristics, but these systems are limited because they 

are not generalizable [1]. The other approach is to use quantum mechanical simulations, like 

density functional theory (DFT), but the computational cost is prohibitively expensive, especially 

in systems with large numbers of atoms [1, 2]. In recent years, the creation of large chemical 

datasets [3] has led to greater interest in using machine learning (ML) to predict chemical 

properties [4]. ML methods are generalizable because they learn universal lower dimensional 

embeddings of reactions and are not restricted by the chemical space of rule-based systems [5]. 

Furthermore, ML methods have significantly lower computational overhead than quantum 

methods, reducing the computation time for predicting reaction properties from hours to 

milliseconds. A conventional approach uses template libraries to encode reactions into their 

molecular fingerprints before feeding them into an ML model [6, 7, 8, 9]. However, template-

based methods are limited for several inherent reasons: (1) they cannot describe novel reactions, 

(2) they must choose between generalisation and specificity, and (3) current algorithms neglect the 

global chemical environment of molecules. (REFERNCE) 

 

Recent research has turned to template-free ML models that learn reaction representations 

adaptively. These models can be divided into graph-based and sequence-based models. Graph 

neural networks (GNNs) treat molecules as 2D graphs and aggregate atom and bond information 

to obtain a reaction encoding [10, 11, 12, 13]. On the other hand, sequence-based models reframe 

the problem as a machine translation task by using text representations of the reactants and 

products, usually the simplified molecular-input line-entry system (SMILES) [14, 15]. This 



 

 

enables one to use sophisticated language models based on the powerful transformer architecture 

[16] to predict chemical reaction properties, which can achieve impressive results [17, 18]. 

However, sequence-methods are invariably limited because they neglect chemical domain 

knowledge and are blind to additional atom and bond features. Moreover, SMILES representations 

are not bijective mappings to molecular structures, meaning they are not permutation invariant. 

 

By treating reactions as 2D graphs or as text, both methods neglect 3D spatial information. Some 

research has explored incorporating 3D coordinates as atom information in molecular property 

prediction [19, 10]. However, no previous work has successfully utilised 3D information in 

reaction property prediction. Furthermore, present research simply uses spatial information as an 

additional atom feature, and there are few architectures that effectively integrate spatial 

information into the model itself. 

 

In this work, we propose RXNformer to predict chemical reaction properties. RXNformer first 

builds a condensed graph of reaction (CGR), which is a superposed graph of reactant and product 

molecules [20, 21]. A directed-message passing neural network (D-MPNN), which is a type of 

GNN, aggregates local neighbourhood information on the reaction graph for each atom. We then 

feed these encodings into a transformer. This leverages the representational power of the 

transformer, but maintains the atom and bond features from the reaction graph and is permutation 

invariant. Moreover, the inclusion of the transformer unlocks the possibility of embedding spatial 

information in the positional encodings of each atom, enabling the model to learn spatial 

relationships between atoms that may not necessarily be captured by the molecular graph. Finally, 

by analysing the attention weights in the transformer, RXNformer is interpretable and can help 

generate chemical insights. Our main contributions are as follows: 

1. We present a novel architecture that synthesises GNNs and transformers to learn both low-

level neighbourhood features and high-level global interdependencies for chemical 

reaction property prediction. 

2. We propose a method to integrate spatial information of reactions into the structural 

representation of the model. 

3. We demonstrate that integrating spatial features achieves state-of-the-art results in three 

reaction property regression datasets. 



 

 

 

 

2. Related Work 

Graph Neural Networks. GNNs have become the most ubiquitous ML technique in chemical 

property prediction because information flow is governed by the underlying graph structure of the 

molecule [11, 22, 13]. However, GNNs aggregate information in a local neighbourhood of each 

atom, which limits them from capturing long-range dependencies in the molecule. This is crucial 

since some atom pairs may be topologically distant but have important interactions, such as in 

intramolecular hydrogen bonding or aromatic systems. One way to address this is to increase the 

depth of the GNN, but this may lead to over-smoothing and poor performance [23]. Another 

method is to construct a virtual supernode [24] or draw virtual edges between every pair of atoms 

[11], but this bypasses the intrinsic structure of the molecule and creates an averaging effect. 

Instead, more recent work has successfully used the attention mechanism to learn global patterns 

in molecules [25, 26, 27]. 

 

Transformers. The transformer [16], originally built for natural language processing (NLP), uses 

multi-headed self-attention and has seen extensive application in a variety of tasks. Recently, a 

flood of research has explored using off-the-shelf transformer architectures to predict chemical 

properties from SMILES strings [28, 29, 17, 30, 18, 31, 32, 33]. These models are successful 

because they apply multiple layers of self-attention that allow every atom to attend to every other 

atom in the reaction. However, the use of SMILES strings as input neglects chemical domain 

knowledge and is not permutation invariant. In contrast, Maziarka et al. [34] treat molecules as a 

list of atoms, and augment the attention mechanism in the transformer to also consider atom 

features, distances and adjacency. They show that this attains a better performance than using 

SMILES strings. 

 

3D features in reactions. Reaction properties depend on spatial distances and directions in 3D 

space, which cannot be captured by SMILES strings or 2D graphs. In molecular property 

prediction, some research has explored supplementing GNNs with 3D information such as bond 

distances, bond angles and torsion angles [19, 35, 36]. These studies consistently show that using 

3D features improves accuracy of molecular property prediction. Recently, Ying et al. [37] showed 



 

 

that by replacing the positional encoding of text with a well-designed structural encoding of a 

graph, it was possible for transformers to represent graphs. This is crucial because it enables one 

to also integrate the 3D spatial encoding of a molecule into the transformer [38]. Thus far, no work 

has been conducted on using 3D features for reaction property prediction. Unlike molecular 

property prediction, reactions involve disjoint molecules from the reactants and products. 

Furthermore, there may be multiple reactants and products. Thus, it is not straightforward to use 

3D information of reactions. However, 3D features are especially important for reactions since it 

can predict effects like steric hindrance that may significantly influence reaction properties. Hence, 

we extend on the work by Shi et al. [38] for reaction property prediction. 

 

3. RXNformer 
Graph representation. For reaction property prediction, Heid and Green [20] achieved state-of-

the-art results by feeding the condensed graph of reaction (CGR) [21] into a D-MPNN. The CGR 

uses the atom-mapping of a reaction to superpose the graph of reactant atoms onto the graph of 

product atoms. Following the recommendation of Heid and Green, we construct the atom and bond 

features of the CGR as the concatenation of the reactant features and the difference between the 

reactant features and product features. Each atom retains the bonds from both the reactant graph 

and the product graph. The D-MPNN architecture used is based on the chemprop library developed 

by Yang et al. [13]. Briefly, each edge aggregates information from neighbouring edges at the 

previous time step: 

ℎ!"
#$% = 𝜏(ℎ!"

& +𝑊 '
'∈{*(!)\"}

ℎ'!
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where ℎ!"
# are the edge features for the edge between nodes v and w at message-passing timestep 

t, 𝜏 is a non-linear activation function, 𝑁(𝑣)\𝑤 is the set of neighbours of v excluding w, and 𝑊 ∈

𝑅/0/, d being the size of the hidden dimension. Further details of the D-MPNN can be found in 

appendix A.  

<Fig 2: Schema for constructing condensed graph of reaction> 

 

Spatial representation. We use RDKit to obtain 3D coordinates of every atom. However, we 

cannot directly use these coordinates because the spatial features should be invariant to rotation 



 

 

and translation of the molecule. Thus, we construct a matrix of the euclidean distance between 

every pair of atoms in the same molecule. For atoms that are in different molecules, we set the 

distance to be 0. This represents the equivalent of the atoms being infinitely far apart. 

𝑑12 = ‖𝑟1 − 𝑟2‖34	

To find the distance matrix for the CGR, we take the difference in the distance in the product 

matrix and the distance in the reactant matrix. Intuitively, <> 

∆/155= 𝑑678/ 	− 	𝑑79:; 	

To learn distributions in the 3D distances and obtain spatial encodings, we use Gaussian basis 

kernel functions [39]. Since the relative position of atoms are highly dependent on the size of their 

atomic radii, we first perform an affine transformation on the distances based on the atom types 𝑎1 

and 𝑎2 of atoms 𝑖 and  𝑗, 𝛾(:!,:")∆12 	+ 	𝛽(:!,:") where 𝛾 and 𝛽 are learnable scalars for each pair of 

atom types. We then pass this through a Gaussian density function to obtain the 3D spatial 

encoding for each kernel: 

𝜓12' =
1

𝜎'√2𝜋
𝑒𝑥𝑝(−

(𝛾(:!,:")𝛥12 	+ 	𝛽(:!,:") − 𝜇
')4

2(𝜎')4 )	

where k is the kernel number, 𝜎' is the learnable kernel centre of the k-th kernel, and 𝜇' is the 

learnable scaling factor of the k-th kernel. Further details can be found in appendix A. 

 

Transformer readout. The D-MPNN learns local neighbourhood features in the CGR. We extract 

the final atom representations after 3 message-passing steps. In NLP, the BERT architecture uses 

a special [CLS] token to capture the representation of the entire sentence. Similarly, we append a 

virtual [CLS] node to represent the entire reaction. It is initially set to the mean of all atoms. We 

integrate the spatial encodings of the reaction into both the absolute positional encoding [16] and 

relative positional encoding [40] of the transformer. The absolute spatial encoding is the sum of 

3D spatial encodings to all other atoms, which we add to the input X: 

𝑋1′ = 𝑋1 + 𝜑1 =>?	

The relative spatial encoding is a linear projection of the 3D spatial encodings, which is used as 

an attention bias in the self-attention step: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄1
@,A , 𝐾2@,A , 𝑉2@,A) 	= 	𝑠𝑜𝑓𝑡𝑚𝑎𝑥(

𝑄1@,A(𝐾2@,A)B

√𝑑
+ 𝜙12A,=6:#1:@	9D;8/1DE)𝑉2@,A		

Further details can be found in appendix A. 



 

 

 

4. Experiments 
We conduct experiments on our model with four reaction property regression datasets. These 

datasets comprise three different tasks: predicting activation energies [2, 41], reaction enthalpies 

[42], and reaction rate constants [43]. Details on the datasets can be found in appendix C. We 

compare our model to the baselines and state-of-the-art established by Heid and Green [20]. This 

is shown in table 1. Each experiment was conducted with five-fold cross validation to obtain the 

average score and standard deviations. Further implementation and experimental details can be 

found in appendix B.  
 Ea ωB97X-D3 

(kcal/mol) 
Ea E2/SN2  
(kcal/mol) 

ΔH Rad-6-RE| 
(eV) 

log(k) rate constants 
(unitless) 

Template-based methods     
Morgan Diff default 13.08 ± 0.98 4.75 ± 0.24 1.11 ± 0.03 0.88 ± 0.09 
Morgan Diff opt 11.39 ± 0.39 4.53 ± 0.23 0.72 ± 0.02 0.75 ± 0.08 
ISIDA default 9.21 ± 0.55 3.14 ± 0.09 0.48 ± 0.02 0.73 ± 0.06 
ISIDA opt 7.55 ± 0.48 3.00 ± 0.10 0.43 ± 0.03 0.59 ± 0.06 
Sequence methods     
Bert default 14.73 ± 0.52 3.54 ± 0.12 0.76 ± 0.02 0.99 ± 0.03 
Bert opt 10.94 ± 0.29 3.37 ± 0.10 0.65 ± 0.01 0.88 ± 0.02 
Graph methods     
Grambow default 6.35 ± 0.26 2.76 ± 0.08 0.40 ± 0.01 1.00 ± 0.14 
Grambow opt 5.26 ± 0.15 2.86 ± 0.07 – a 0.76 ± 0.26 
CGR default 4.84 ± 0.29 2.64 ± 0.10 0.16 ± 0.01 0.66 ± 0.29 
CGR opt 4.25 ± 0.19 2.65 ± 0.09 0.13 ± 0.01 0.66 ± 0.24 
RXNformer (ours) 2.68 ± 0.61 2.53 ± 0.11 0.14 ± 0.02 0.33 ± 0.08 

Table 1: Comparison of mean absolute error (MAE) score on each dataset. Lower score is better. The best 
performance per dataset is highlighted in bold. The root mean squared error (RMSE) scores and model sizes can be 
found in appendix D. aAs highlighted by Heid and Green, grambow opt simply memorises enthalpies of molecules 

that repeat in the training and test set, thus we exclude it from this comparison. 
 
Discussion. RXNformer outperforms previous methods in predicting activation energies and 

reaction rates. However, RXNformer does not observe significant improvement in predicting 

reaction enthalpies. This could be because reaction enthalpies are mostly dependent on bond 

enthalpies and not on the 3D environment, making global interactions and spatial features less 

significant. Thus, a simple GNN which can learn bond enthalpies would be able to predict 

reaction enthalpies. This may suggest that spatial information is less important for 

thermodynamic properties like enthalpy but more important for kinetic properties like activation 

energy. We conduct further ablation studies to evaluate the contributions of each component of 

our model. This can be found in appendix D. 

 



 

 

The transformer component of RXNformer also allows us to obtain attention weights, revealing 

which atom neighbourhoods influence the final prediction the most. This makes RXNformer 

more interpretable than GNNs, which acts as a sanity check that increases trust in the model 

prediction by allowing chemists to verify if the prediction aligns with chemical intuition. 

Furthermore, it may reveal chemical insights about the reaction that help chemists identify the 

substructures or functional groups which contribute the most to the property of interest, allowing 

chemists to make modifications for optimization. 

 

5. Conclusions 
In this work, we presented the RXNformer as an effective architecture for reaction property 

prediction. RXNformer can represent local and global interactions and incorporates 3D spatial 

information into the structure of the model, achieving state-of-the-art results in predicting 

activation energies and reaction rate constants. Moreover, RXNformer is interpretable, giving it 

more real-world applicability than previous ‘black-box’ models which can only provide the user 

with a numerical prediction.  

 

However, RXNformer also has limitations. Compared to previous architectures, RXNformer 

requires more data pre-processing steps to generate atom-mapping and 3D information. 

Furthermore, if the atom-mapping or 3D information is noisy or incomplete, it may hinder model 

performance. Nonetheless, our work highlights that spatial features are critical for reaction 

property prediction, especially for kinetic properties, and that future work should explore 

building models that can make greater use of spatial information like bond angles.  
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Appendix A – Architecture details 
Building the CGR. Let the molecular graph be an undirected graph 𝐺 with atoms 𝑉 and bonds 

𝐸. Each atom 𝑣 ∈ 𝑉 has a feature vector 𝑥! ∈ 𝑅: and each bond (𝑢, 𝑣) ∈ 𝐸 from atom 𝑢 to 𝑣 has 

a feature vector 𝑒!" ∈ 𝑅F. To form the CGR, we superpose the atoms from the products onto the 



 

 

corresponding atoms from the reactants based on the atom-mapping. We concatenate the features 

from the reactant graph with the difference in features in the reactant and product graphs to 

obtain the new features: 

𝑥! = 𝑐𝑎𝑡(𝑥!79:; , 𝑥!
/155)	

𝑒!" = 𝑐𝑎𝑡(𝑒!"79:; , 𝑒!"
/155)	

The list of bonds now comprises bonds from both the reactant graph 𝐺79:; and product graph 

𝐺678/, 𝐸 = 𝐸79:;⋃ 𝐸678/. All four datasets used are balanced, so the list of atoms is simply 

𝑉 = 𝑉79:; = 𝑉678/. 

 

D-MPNN. The D-MPNN consists of a message passing phase and a readout phase. The message 

passing phase consists of 𝑇 time steps, where each edge is updated based on the information 

from neighbouring edges. We initialize the hidden state in each edge at time step 0 by 

concatenating the features of the first atom 𝑥! to the bond features 𝑒!" and passing it through a 

single layer: 

ℎ!"& = 𝜏(𝑊1𝑐𝑎𝑡(𝑥! , 𝑒!"))	

where 𝑊1 ∈ 𝑅/×/!, and 𝑑 being the hidden size (300),  𝑑1 being the size of 𝑐𝑎𝑡(𝑥! , 𝑒!"), and 𝜏() 

being a nonlinear activation function (ReLU). The message 𝑚!"
#$% at time step 𝑡 + 1 in edge 

𝑣𝑤	is the sum of hidden states from neighbouring edges directed towards 𝑣 at the previous time 

step 𝑡: 

𝑚!"
#$% = '

'∈{*(!)\"}

ℎ'!# 	

where 𝑁(𝑣)\𝑤 is the set of neighbours of 𝑣 excluding 𝑤. To obtain the new hidden state values: 

ℎ!"#$% = 𝜏(ℎ!"& +𝑊?𝑚!"
#$%)	

where 𝑊? ∈ 𝑅/×/. We repeat this for 3 times steps. Finally, we transform the hidden states back 

into atom representations: 

ℎ! = 𝜏(𝑊&(𝑐𝑎𝑡(𝑥! '
"∈*(!)

ℎ"!B ))	

where 𝑊& ∈ 𝑅/×/#, where 𝑑& is the size of 𝑐𝑎𝑡(𝑥! , ℎ!"). At the end, we obtain representations 

ℎ! of each atom in the CGR of shape 𝑛 × 𝑑, where 𝑛 is the number of atoms. 



 

 

 

Getting the spatial features. We use RDKit to generate the 3D coordinates of each atom in each 

molecule in the reaction. Within each molecule, we calculate the Euclidean distance between 

every pair of atoms 𝑑12. For atoms in different molecules, we set the distance to be 0. We repeat 

this for the reactants and the products separately.  

𝑑12 = {‖𝑟1 − 𝑟2‖34			, &𝑖𝑓	𝑠𝑎𝑚𝑒	𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒	0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	 

We first pad the distance matrixes to the maximum number of atoms and append the virtual 

[CLS] atom. To find the distance matrix for the CGR, we take the difference in the distances in 

the product matrix and the distances in the reactant matrix.  

∆/155= 𝑑678/ 	− 	𝑑79:; 	

We perform an affine transformation on the distances based on the atom types 𝑎1 and 𝑎2 of atoms 

𝑖 and  𝑗, 𝛾(:!,:")∆12 	+ 	𝛽(:!,:") where 𝛾 and 𝛽 are learnable scalars for each pair of atom types. We 

then pass this distance matrix through a set of gaussian density functions with 𝑘 kernels: 

𝜓12' =
1

𝜎'√2𝜋
𝑒𝑥𝑝(−

(𝛾(:!,:")𝛥12 	+ 	𝛽(:!,:") − 𝜇
')4

2(𝜎')4 )	

where k is the kernel number, 𝜎' is the learnable kernel centre of the k-th kernel, and 𝜇' is the 

learnable scaling factor of the k-th kernel. For the virtual [CLS] atom, and all other padded 

atoms, we set 𝜓12'  to be 0. The shape of 𝜓 is 𝑁 × 𝑁 × 𝐾. The absolute spatial encoding of atom 𝑖 

is calculated as the sum of the spatial encodings to all other atoms 𝑗 and passed through a linear 

layer: 

𝜑1=>? = 𝑊'
&'
2∈H

𝜓12' 	

where 𝑊'
& ∈ 𝑅/×I. The shape of 𝜑=>? is 𝑁 × 𝑑, where N is the max number of atoms (after 

padding). The relative spatial encoding between atoms 𝑖 and 𝑗 is a linear projection of the 3D 

spatial encodings: 

𝜙12
=6:#1:@	9D;8/1DE = 	𝐺𝐸𝐿𝑈b𝜓12𝑊'

%c𝑊'
4	

where 𝑊'
% ∈ 𝑅I×I and 𝑊'

4 ∈ 𝑅I×J, and 𝐻 is the number of heads in the transformer. The final 

shape of 𝜙 is 𝑁 × 𝑁 × 𝐻. 

 



 

 

Transformer readout. We take the final atom representations from the D-MPNN ℎ and pad it to 

the maximum number of atoms 𝑁. We also append a virtual [CLS] atom to represent the entire 

reaction. We first briefly introduce the transformer architecture. The transformer consists of N 

attention layers, where each layer is composed of a multi-head self-attention block, followed by a 

feed-forward block, with both block having residual connections and layer normalization. The 

multi-headed self-attention comprises H heads. Let the input to the 𝑙-th layer be 𝑋@. Head 𝑖 

computes the vectors 𝑄1 = 𝑋𝑊1
K, 𝐾1 = 𝑋𝑊1

I, 𝑉1 = 𝑋𝑊1
H. The attention operation is: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥()	

 

Our implementation of the transformer encoder is inspired by The Annotated Transformer1. 

 

The absolute spatial encoding is the sum of 3D spatial encodings to all other atoms, which we 

add to the input X: 

𝑋′ = 𝑋	 +	𝜑12=>?	

The relative spatial encoding is a linear projection of the 3D spatial encodings, which is used as 

an attention bias in the self-attention step: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄1@,A , 𝐾2@,A , 𝑉2@,A) 	= 	𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄1@,A(𝐾2@,A)B

√𝑑
+ 𝜙12A,=6:#1:@	9D;8/1DE)𝑉2@,A		

 

padding 

 

Appendix B – Experimental details  
Training details. All models are trained on a single NVIDIA <> GPU for 100 epochs. This 

takes approximately  

 

The transformer has 2 layers and each layer has 3 self-attention heads. We do not use dropout. 

The batch size is 50 

<Fig: Atom and bond features used> 

 

 
1 http://nlp.seas.harvard.edu/annotated-transformer/ 



 

 

Training Details 

 

Obtaining 3D Information. Spatial data was obtained with  

Conformers definition, lowest energy and UFF rdkit 

skipped molecules 

pre-processing steps, for highly strained molecules may not work. 

 

Appendix C – Dataset details  
datasets 

 

Appendix D – Additional Results 
rmse scores, model size 

 

ablation studies 

 

Attention and interpretability 

 

Ablation studies. We conduct ablation studies on the ωB97X-D3 dataset to evaluate the 

contributions of each component of our model. In table 2, we compare not using atom-mapped 

information, drawing virtual edges between mapped-atoms, or building a CGR. We find that the 

CGR has a stronger inductive bias than drawing virtual edges. In table 3, we compare the effects 

of adding spatial features and the transformer. We find that both improve model performance.  

 

 

  



 

 

 

● Example reaction that can demonstrate importance of spatial features and 
transformer/global interactions for my diagram 

● What other analysis on which reactions were guessed right / guessed wrong should I do? 
 
 
Get attention weights on e2sn2 
 
Reviews  


